A Little Switch: Alternative Domain Conformations Control Bacterial Flagella Rotation Direction
نویسنده
چکیده
The flagella of E. coli move the bacterium in one of two ways. When they spin counterclockwise, the cell is propelled forward in a straight line. When they spin clockwise, the bacterium tumbles in place, ultimately pointing in some new, random direction, ready for another straight-line run. The search for food is a major trigger for this tumbling and running, and the direction of flagellar spin is regulated in part by methyl-accepting chemotaxis proteins (MCPs). The extracellular domain of an MCP is a chemosensor, which responds to changing concentrations of its target molecule by a shape change. The signal embodied by that shape change is transduced first through a membrane-spanning domain, then to one or more small linkers called HAMPs, and finally to a kinase control module, which can turn on, or turn off, a kinase, which then either does, or doesn’t, phosphorylate another protein. The ratio of the phosphorylated to unphosphorylated protein is the final determinant of the direction of flagellar rotation, and hence the movement of the bacterium. The HAMPs are not merely passive links in this chain; instead, they are believed to relay the signal from the chemosensor to the control module. How they do so has now been elucidated by Michael Airola, Brian Crane, and colleagues, who show that by adopting alternative conformations, the HAMP domain acts like a switch to turn on or turn off kinase activity, and cause the bacterium to tumble or run. The authors knew that some bacterial proteins contained HAMPs of two different shapes. Both were made of four helices. While in one (HAMP1) the helices were lined up alongside each other, in the other (HAMP2), they were distorted. One possible explanation was that the two structures were snapshots of a single structure that could flip back and forth between the two conformations. To explore this question, they constructed a chimeric receptor and expressed it in E. coli, using a HAMP from another bacterium that is more easily characterized structurally. They used a technique called pulsed-dipolar electron spin resonance spectroscopy to make measurements on the proteins in solution, and employed various genetic mutants to lock the structures in place. They found that HAMP1 and HAMP2 were indeed alternative conformations, and that they send opposing signals to the kinase control module, leading to opposing flagellar movements. They identified a key residue in the HAMP structure that stabilized the inhibitory state, and showed that mutation of this residue could flip the HAMP into the alternative conformation and ‘‘turn on’’ the activity of the protein.
منابع مشابه
Fumarate or a fumarate metabolite restores switching ability to rotating flagella of bacterial envelopes.
Flagella of cytoplasm-free envelopes of Escherichia coli or Salmonella typhimurium can rotate in either the counterclockwise or clockwise direction, but they never switch from one direction of rotation to another. Exogenous fumarate, in the intracellular presence of the chemotaxis protein CheY, restored switching ability to envelopes, with a concomitant increase in clockwise rotation. An increa...
متن کاملSubunit organization and reversal-associated movements in the flagellar switch of Escherichia coli.
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization i...
متن کاملStructure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor.
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and Ch...
متن کاملChemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli.
The direction of rotation of the Escherichia coli flagellum is controlled by an assembly called the switch complex formed from multiple subunits of the proteins FliG, FliM, and FliN. Structurally, the switch complex corresponds to a drum-shaped feature at the bottom of the basal body, termed the C-ring. Stimulus-regulated reversals in flagellar motor rotation are the basis for directed movement...
متن کاملThe switching dynamics of the bacterial flagellar motor
Many bacteria are propelled by flagellar motors that stochastically switch between the clockwise and counterclockwise rotation direction. Although the switching dynamics is one of their most important characteristics, the mechanisms that control it are poorly understood. We present a statistical-mechanical model of the bacterial flagellar motor. At its heart is the assumption that the rotor pro...
متن کامل